What is the difference between "q" and △H?

q is the energy considering mass, substance, and⊿ temp

△ H is the amount of energy from a reaction

Entrapy

$$\triangle H = \sum \triangle H_{f (products)} - \sum \triangle H_{f (reactants)}$$

relationship:

$$\triangle H = \frac{q}{\text{mole}}$$

two ways to determine:

physical collection (in lab) Calstinety

theoretical (data table) final - initial bond energies

use data table in the front of your workbook Aluminin Hkymil S G

DHf - form compound from element

> (+ 02 → (02/g) 0 0 -393.5

Chemical Reaction--think of this as 2 steps

1. break bonds

Energy is always required to break bonds (endothermic)

Energy +
$$CH_4$$
 + $2O_2$ \longrightarrow C + $4H$ + $4O$

H $\vdots \ddot{C} : H$ 2 $\ddot{O} : : \ddot{O}$ $\dot{C} \cdot \dot{C} \cdot \dot{C$

2. make new bonds

Energy is always given off to form bonds (exothermic)

Compare 2 steps to determine overall energy exchange

http://employees.oneonta.edu/viningwj/sims/bond_energy_dh_reaction_s.html

Calculate enthalpy of combustion (in kJ/mol) of CH₄

Write out the balanced combustion rxn

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

(look on data chart)

$$\Delta H_{0f}$$
 CH₄(g) = -74.8 kJ/mol

$$^{\Delta}H_{0f}^{0}H_{2}O(g) = -241.8 \text{ kJ/mol}$$

 $^{\Delta}H_{0f}^{0}CO_{2}(g) = -393.5 \text{ kJ/mol}$

$$CH_4(I) + {2O_2(g)} \longrightarrow CO_2(g) + {2H_2O(g)}$$

$$(-74.8)$$

$$(-393.5)$$

$$\triangle H = \sum \triangle H_{f (products)} - \sum \triangle H_{f (reactants)}$$

△
$$H_{rxn}$$
 =[(-393.5kJ)+ 2(-241.8kJ)] - [(-74.8.0kJ)) +2(0/kJ)]

= -877.\

- (-74.8) = 852.3 ⊀ T

per reaction cycle

This is the energy released when one mole of methane combusts.

If I have 266 grams of water produced, how much energy will be produced?

$$\triangle H = \sum \triangle H_{f (products)} - \sum \triangle H_{f (reactants)}$$

State function: Final - Initial

this is relative (a comparison), not absolute

"snapshot" of energy in bonds found by

H of formation of products - H of formation of products

 $\frac{21}{2} + 0z \rightarrow 21/2(0/2)$ $\frac{2}{10} = \frac{2}{10} = \frac{2$

exothermic

- 1 Balance
 - 3) Data
 - 3) (X).coef.

Calculate enthalpy of combustion (in kJ/mol) of methane, C₆H₆

Write out the balanced combustion rxn of Benzene (C₆H₆)

$$2 C_6H_6(I) + 15O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(I)$$

(look on data chart)

$$\Delta H^{0}_{f} H_{2}O(I) =$$

$$^{\Delta}H^{0}_{f}$$
 C₆H₆(I) =

$$^{\blacktriangle}H^{0_f}CO_2(g) =$$

$$2C_6H_6(I) + 15O_2(g) \rightarrow 12CO_2(g) + 6H_2O(I)$$

$$\Delta H = \sum \Delta H_{f (products)} - \sum \Delta H_{f (reactants)}$$

$$\Delta H_{rxn} = (-c/722 + -17148) - (498)$$

$$-6436.8 - 98 = -6534.8 \times 5 \text{ fmol}$$

per reaction cycle Ler 2 / Gt/b

This is the energy released when two moles of benzene combusts. We want the energy per one mole of benzene:

$$\frac{-65}{2} = \frac{34 \cdot 8}{2 \text{ mol } C_6 H_6} = 3267.4 \text{ kJ/mol}$$

9 grams of benzene, now المعارية على المعار If I have 429 grams of benzene, how much energy will be

produced?